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Abstract

Phase stability calculation is a very important topic in phase equilibrium modeling. Usually the phase stability problem is solved by minimization
of the tangent plane distance (TPD) function, the sign of the objective function at its global minimum indicating the state of the mixture at given
conditions. The TPD function is non-convex and may be highly non-linear, many phase stability problems being really challenging. The tunneling
global optimization method had been successfully used for solving a variety of phase equilibrium problems, including stability, with cubic equations
of state (EoS). In this work, we test the ability of the tunneling method to solve the phase stability problem for more complex EoS like PC-SAFT.
Calculations are performed for several benchmark problems, for mixtures of non-associating molecules, from binaries to multicomponent. In one
example, the mixture contains hydrogen sulphide, for which the three parameters required by the PC-SAFT EoS were unavailable in the literature.
These parameters, as well as the binary interaction parameter (BIP) between hydrogen sulphide and methane, were calculated based on experimental

data.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Phase stability; Tangent plane distance; Global optimization; Tunneling; PC-SAFT equation of state

1. Introduction

Phase stability analysis calculations represent an important
subproblem of phase equilibrium calculations. It is intensively
used in research and industrial applications for chemical pro-
cess simulation, design and optimization, hydrocarbon reservoir
engineering, etc. Phase stability analysis can asses the state of a
mixture at given conditions; it is very useful for initialization of
phase split calculations, as well as for their validation.

The criteria for thermodynamic stability were first set by
Gibbs [1]; Baker et al. [2] provided a comprehensive analysis
of these criteria, while Michelsen [3] proposed the implemen-
tation of the TPD function, which is currently the most widely
used.
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The dimensionless TPD function, Michelsen [3], has the form

D(x)

D) = —— =) xilln fi(x) —In fi2)) (1

i=1

where f; is the fugacity of component i, z=(z1,.. .,ch)T is the
composition of the feed whose stability is assessed.

The vector of primary variables isx = (xg,. . .,Xpc—1 )T contain-
ing the mole fractions in the trial phase; here we have considered
the mole fraction of component “nc” as dependent variable

nc—1

Xe=1-Y x )

i=1

The problem can be formulated as an optimization prob-
lem or as the resolution of non-linear system of equations. The
minimization problem to be solved is:


mailto:dnichita@univ-pau.fr
dx.doi.org/10.1016/j.cej.2007.11.036

510

D.V. Nichita et al. / Chemical Engineering Journal 140 (2008) 509-520

Nomenclature

reduced Helmbholtz free energy

Helmholtz free energy (J)
temperature-dependent segment diameter (A)
tangent plane distance function
dimensionless tangent plane distance function
fugacity of component i

objective function for the tunneling method

g average radial distribution function of hard-chain
fluid

gg% site—site radial distribution function of hard-chain
fluid

I, I, integral functions; defined by Eq. (15) and (16)

k Boltzmann constant (J/K)

kij binary interaction parameter between compo-
nents i and j

m number of segments per chain

m mean segment number in the system

n umber of independent variables

nc number of components

p pressure (bar)

R universal gas constant

SBP objective function (BP pressure method)

Srlash ~ objective function (Flash method)

T temperature (K)

T tunneling function

T.(x) classical tunneling function

Te(x)  exponential tunneling function

X independent variable (Section 3)

X; mole fraction of component i in the trial phase

Xi liquid mole fraction of component i, Eq. (40) and
(41)

Xm stationary points

Xtu feasible point in another valley of the objective
function

Vi mole fraction of component i in the trial phase

Z feed composition, component i

Z compressibility factor

Greek letters

n defined by Eq. (7), n=0, 1, 2,3 (A"3)

n packing fraction; n=¢3

Am strength of the pole at the point xp,

P total number density of molecules (1/A3)

o segment diameter (A)

op standard percent relative deviation in pressure

Oy standard percent deviation in liquid mole fraction

oy standard percent deviation in vapor mole fraction

i fugacity coefficient of component i

Superscripts

calc calculated property

disp contribution due to dispersive attraction

he residual contribution of hard-chain system

hs residual contribution of hard-sphere system

res residual property

T transposed

* at stationary points

v iteration level
Subscripts

G at the global minimum
i,j,k  component index

Find
min D(x)
S.t.

0<x;<1; i=1, nc—1

A phase is stable if all stationary points of D are non-negative,
that is, the value of the TPD function at the global minimum is
zero (the trivial solution x =z is always a stationary point of
D); a negative value of D at a stationary point indicates that the
mixture is unstable and will split into two or more phases at
given conditions.

The TPD surface is non-convex and may be highly non-linear;
it has many stationary points (including trivial solutions and
non-physical solutions) which can be local minima or saddle
points. Even though they may be very fast, local solution meth-
ods are initialization dependent, and may converge to undesired
stationary points different from the putative global minimum.
Local methods are finding a single stationary point for a given
initial guess; in a multiphase context, starting from many dif-
ferent initial guesses still does not offer the guarantee that the
global minimum was found [3].

The TPD analysis requires the component fugacity (or
chemical potential) at given pressure, temperature and feed com-
position. As mentioned, minimization of the TPD function is a
difficult problem itself; additional complexity may be added by
the thermodynamic model.

Mainly in the last decade, a variety of global optimization
methods have been used to solve the global stability problem:
homotopy continuation [4], branch and bound [5-8], Newton-
interval [9-12], simulated annealing [13], space search [14],
tunneling [15-19]. Some of these methods are designed to find
all the stationary points, while others are computing only the
global minimum. They were applied to different thermodynamic
models, from relatively simple (such as cubic EoS) to very com-
plex ones.

In our previous work on phase stability analysis we have
used the gradient-based tunneling global optimization method
together with a general form of cubic EoS. Different formula-
tions of the TPD criterion have been used, including those based
onreduced variables [ 16], component molar densities as primary
variables [18], or using a modified objective function [19].

The aim of this work is to study the ability of the tunneling
method when complex thermodynamic models are used.
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Starting from the original statistical association fluid theory
(SAFT) EoS proposed by Chapmann et al. [20], a variety of
equations of state were proposed; see for instance the compre-
hensive review by Miiller and Gubbins [21]. In this work we
use the perturbed-chain SAFT (PC-SAFT) EoS, as introduced
by Gross and Sadowski [22].

In this work, we are focusing on mixtures containing hydro-
carbon components and hydrogen sulphide, carbon dioxide and
nitrogen, such as naturally occurring reservoir fluids. The PC-
SAFT EoS proved to give good results for synthetic hydrocarbon
mixtures [23].

Petroleum reservoir mixtures (hydrocarbons + classical con-
taminants, except water) can be treated without association,
considering only the dispersive term in the PC-SAFT EoS.

The paper is structured as follows: we first briefly present
the PC-SAFT EoS, then we describe an up-to-date version
of the tunneling global optimization method as implemented
in this work (we stress on handling tolerances for generating
the initial points in the tunneling phase, which are crucial for
the robustness of the method); finally, the reliability and effi-
ciency of the tunneling method are tested on several difficult
numerical examples. The component parameters and the BIP
between methane and hydrogen sulphide required by one exam-
ple are calculated by matching experimental data available in the
literature.

2. The PC-SAFT equation of state

In the PC-SAFT equation of state [22], the molecules are
conceived to be chains composed of spherical segments, in
which the pair potential for the segment of a chain is given
by a square-well potential suggested by Chen and Kreglewski
[24]. Non-associating molecules are characterized by three pure
component parameters: the number of segments per chain m,
the depth of the potential ¢, and the temperature independent
segment diameter o. In this section, we will only summarize the
main expressions of the PC-SAFT equation of state; full details
can be found in the original paper by Gross and Sadowski [22].

The PC-SAFT equation of state is written in terms of the
Helmholtz free energy A that, for a multicomponent mixture
of non-associating chains, consists of a hard-chain reference
contribution and a perturbation contribution to account for the
attractive interactions. In terms of reduced quantities, this equa-
tion can be expressed as

a Tes Cl + adlsp (3)

where a =A/nkT.

It should be noted that the contribution due to association
is not included in this work since we are dealing with non-
associating systems. Therefore, only dispersive attractions are
considered.

The hard-chain reference contribution is given by

nc
d =ma™ = xim; — 1)In gh(oi) )

i=1

where /m is the mean segment number in the mixture

m = Zx,-mi (5)

The Helmholtz free energy of the hard-sphere fluid is given
on a per-segment basis

ns || 300 o g_ el — 6
o6 a0-6) ¢o | In(1 —¢3)| (6)

6
with ¢, defined as

nc
¢n = %l)zximid?; n=0,1273 M
i=1

and the radial distribution function of the hard-sphere fluid given
by

gh.s _ 1 +< d,‘dj ) 3{2
U l—¢ 0 \di+dj) (1 —3)?

+( didj )2 2{% .
di+dj) (1-5)

The temperature-dependent segment diameter d; of compo-
nent i is given by

i, j=1, nc (3)

di = o; [1 —0.12 exp (—3]%)} ©)

where k is the Boltzmann constant and 7 is the absolute temper-
ature.

The dispersion contribution to the Helmholtz free energy is
given by

a¥isP = —27p I1(n, m) m2eo3

b 8zhc
—mom|1+Z"+p P L(n, mm2e253  (10)

where Z" is the compressibility factor of the hard-chain refer-
ence contribution, and

nc nc

- i\ 3
m2eo3 = ZZ)C, xXjm;m;j (k;{> i (11)

i=1j=1

nc nc

2
m2e203 = Zlexjm m; (kT{) l3j (12)

i=1 j=1

The parameters for a pair of unlike segments are obtained by
using conventional Lorentz—Berthelot combining rules

eij = eig;(1 — kij) (13)
1
oij = E(Ui +0j) (14)

where k;; is a binary interaction parameter between components
i and j which is introduced to correct the segment—segment
interactions of unlike chains.
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The terms I1(n, m) and I>(n, m)in Eq. (10) are substituted by
simple power series in density

6
L, m) =Y _aimyy (15)
i=0
6 .
Ly, m) =Y _bimm’ (16)
i=0

where the coefficients a; and b; depend on the chain length as
given in Gross and Sadowski [22].

The density to a given system pressure p*® is determined
iteratively with the Newton—Raphson method by adjusting the
reduced density 7 until p¢¢ =p%¥$, For a converged value of 7,
the number density of molecules p (given in A~3) is calculated
from

6 nc -1
p = nn(Ex,-m,-d?) (17)
1=

The molar density p can be expressed in different units such
as kmol m~3 by using Avogadro’s number and appropriate con-
version factors.

The compressibility factor Z is calculated from the relation

8&1‘68

on

Z=1+n( ) =1+ zhe 4 7% (18)
T.x;

The pressure can be calculated in SI units of Pa=N/m? by
applying the relation

o 3
A

p=ZkIp (101‘)) (19)
m

The fugacity coefficient ¢;(T,p); i, j=1, nc is related to the
residual chemical potential according to

wi(T, v)
Ingj=—"———-InZ 20
n ¢; NKT n (20)
where u;*is obtained from
I"eS 7’: 8 ~1€s
:ul ( v) :eres+(Z—1)+ ( a )
NkT xi )1, X

nc Jares
-> xk( ) 1)
k=1 O Tv,xjzk

In Eq. (19), partial derivatives with respect to mole fractions
nc

are calculated regardless of the summation relation in =1.
i=1

3. The tunneling global optimization method
3.1. The tunneling method

The code used in this work is based on the classical Levy and
Montalvo [25] and exponential Barrén—-Gémez [26] tunneling

methods, modified to deal with bounded problems to find global
optima of non-linear smooth functions, subject to bounds on the
variables, that is

F§ = inf{F(x)}

. (22)
subject to x€ B

where B={xeR" I<x<u; I, ue R"; i=1,n} is the feasible
region and F: B— R: F e C?.

The basic idea of these methods is to funnel from one val-
ley of the objective function to another, to find a sequence of
local minima with decreasing function values, F(x}) > F(x}) >

- > F(x§), where x(; is the global minimum of F(x) and x; # x;
for i #j, ignoring the local minima with larger objective func-
tion values than the ones already found (up to a tolerance given
by the user). This characteristic of “ignoring” minima makes the
algorithm more efficient and faster than other general purpose
methods like simulated annealing, random search, clustering and
genetic algorithms (see Gomez et al. [27]).

The tunneling method has two phases. In phase 1, the min-
imization phase, starting from an initial point xg, finds a local
minimum x* with F* = F(x"), using any local bound constrain
optimization method. In phase 2, the tunneling phase, a feasible
point x; is obtained in another valley with F(x})) < F*, which
will be taken as the initial point for the subsequent phase 1 (see
Fig. 1).

3.2. Minimization phase

Any algorithm designed to solve local optimization problems
with bounds on the variables can be used in this phase. We use
here a limited-memory quasi-Newton BFGS method [28,29].
The implementation is designed to solve large size problems,
but when the problem is of small size (that is, problem dimen-
sionality is from n =3 to n=40) as it is in our case, the method
can behave similarly to a normal quasi-Newton, if the number
of gradient and step vectors used to update the approximation of
the Hessian is taken equal to n (see [30]). In this code the criteria
to consider a successful local optimization is given by:

tunnel

Fig. 1. The basic idea of the tunneling method.
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(a) The infinity norm of the projected gradient at the current
iteration is sufficiently small:

IIproj g(x"™ 1|0 < PGTOL (23)

with PGTOL being a positive small tolerance (less than one)
given by the user.

(b) No further improvement in the successive values of the
objective function is possible

|F"t!' — F¥| < TOLF(1 + [F"*')) (24)

with F"*1 = F(x"*1) and F¥ = F(x")
In some local optimization codes, TOLF is given by the user.
In the case of the code L-BFGS-B used here

TOLF = FACTR - epsmch (25)

with epsmch being the machine precision which is auto-
matically generated by the code and the user supplies a value
FACTR € [10°,10"%]. Typical values for FACTR on a com-
puter with 15 digits of accuracy in double precision are:
FACTR =1.d + 12 for low accuracy; FACTR =1.d+7 for mod-
erate accuracy; FACTR =1.d +1 for extremely high accuracy. If
the user sets FACTR =0, the test will stop the algorithm only if
the objective function remains unchanged after one iteration.

3.3. Tunneling phase

3.3.1. Tunneling functions

Once a local minimum x* has been found, we have to solve
an inequality problem:

Find the xj, such that

T(xy) = F(xy) — F(") <0, g # 2" (26)

If an x7, is found, it would be in another valley.

To solve the inequality problem (26) using gradient type
methods, we place a pole at x* to destroy the minimum, and cre-
ate a transformed problem using one of the following functions
(where ||-]| is the squared Euclidean norm) (see Fig. 2):

Tunneling function [25]

F(x) — F(x*)
To(x) = W (27a)
Exponential tunneling function [26]
To(x) = (F(x) — F(x*)e®/ 11D (27b)

The exponential function is generally faster.When
[lx—x"||>1 functions T, and T. become flat slowing the
convergence to xj, and thus we need to modify them as
follows:

— #y) e/ [lx—x*|])
T {(F(x) F(x")e
F(x) — F(x*)

if [lx—x*|] <1
if [lx —x*[| > 1
(28)

The same applies for the classical tunneling function. For
both functions, A" is the strength of the pole and to guarantee

fo- £ .
f(x)—f<0

/"

X
T(X) »S
Tx)Z 0
== n:1 =x° solution
'.‘k .:. >
. N X

Fig. 2. Generating a new feasible initial estimate by placing a pole and destroy-
ing the minimum already found.

continuity and differentiability at points with [|[x —x"|| =1, we
use the ramp function introduced in Levy and Montalvo [25].
Solving problem (26) now consists in finding xj;, such that

Te(xf) <0 or Tu(xy) <0 (29)

We can take Newton type descent directions to solve this
inequality problem since 7(x) is smooth for x #x" and thus it
is possible to use the same algorithm used in the minimization
phase that produce descent directions, with appropriate stopping
conditions to solve the inequality problem (29).

As the original objective function is a general non-linear
function only assumed to belong to C? for x€ B, it could
have many local and global minima and convergence to other
minima with the same (and so far the best) value F* of the
objective function (at the same level) is possible, that is, with
F(x}) = F(x}_,) = F*. Those would be acceptable solutions
for problem (26) satisfied at the equality. Then, in order to avoid
going back to those minima at the same level already found,
during the tunneling phase the poles set at each minimum are
preserved until a better lower value of the objective function is
found. When this happens, the poles are no longer needed as
the algorithm will never accept a point with F(x)>F(x"). The
tunneling functions (27a) and (27b) take the form:

F(x) — F(x*)

Te(¥) = ———— 5= (302)
TTi=ille = 711
and
t
Te(x) = (F(x) — F(x) ] [e®/ 1D (30b)

i=1

making =1 as soon as a new minimum is found with a
smaller function value than F(x").
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The specific algorithm is as follows:
Given an initial guess x¢ until convergence do

Phase 1—local minimization
From an initial point x°
Find arg min F(x) = x*
xXeB
Phase 2—tunnelization
From an initial point x{) in a neighborhood of x”
Find x{, such that T(x},) < 0 and x{; € B using the local opti-
mization routine used in phase 1 to generate descent directions
and acceptable step lengths for 7(x).
Set x, — x°, and go to phase 1.

3.3.2. Initial point for the tunneling phase

Once alocal minimum x* has been found, we need to generate
an initial point x?u to start the tunneling phase. This point is
generated along a random direction in a neighborhood of x”, to
preserve local information, as follows:

0 * r

Ro=a e (31)
where T = (r1,...,;m) with r; € (—1, 1) for i =1, n, random with
normal distribution.

Parameter & is the minimum distance from x" to x{), and must
be selected in such a way, that the new initial point x0, is in a
neighbourhood of x™ and is related to the desired precision in
x". It has to be carefully selected to avoid a conflict with other
tolerances of the method (as the one that decides that another
point is a minimum at the same level). This can be clearer with
the following analysis:

It is known (see Gill et al. [31]) that for a well-conditioned
problem, satisfaction of Eq. (24) implies that

Ix"*! = x"|| < VTOLF (1 + ||x”+1||) 32)

If x} represents the exact minimum and x” = x"*!is an approx-

imated, then the right-hand-side of (13) is also an upper bound
for the distance from x¥ to x, i.e.:

Il — x"|| < V/TOLE (1 + |[x*]]) (33)

under the assumption stated. In order not to take any other
possible minimum within the neighborhood of x} of radius
~/TOLF % (1 + [|x*|]), the initial point for the tunneling phase
should satisfy.

VTOLF (1 + [[x*]]) < |lx} — x3, (34)

As we only have the approximated minimum and not the
exact one, then the distance from x" to x, should be at least

2+/TOLF(1 + ||x*|]) (35)

As the condition of a well-conditioned problem that we
assume for this derivation is not always satisfied in practice,
we relax the bound as

&1 = 2(TOLF)*(1 + [|x"[]) (36)
with ¢=1/5.

This choice for the initial point of the tunneling phase dif-
fers from the ones presented in Levy and Montalvo [25] and
Barrén and Gémez [26] and is adaptive in the sense that the
minimum distance & depends on the current local minimum to
be destroyed.

Tunneling would not be successful (condition (29) has not
been satisfied yet) due to any of the following reasons:

(i) A corner of the admissible set has been reached.
(ii) The strength of the pole is greater than a preset maximum
value without having obtained a descent direction.
(iii) The maximum number of function evaluations allowed for
this phase has been reached.

In any of these cases it is necessary to restart tunneling from
another initial point, x,. In our implementation the number of
initial points generated in a neighborhood of x* using Eq. (31)
is 2n, where n is the problem dimension. In order to explore
further, we then take initial points generated at random in the
whole feasible region until the amount of computing time given
by the user is reached. The default value is max(100,57). If no
solution to problem (26) is found for this number of initial points,
the algorithm will stop (see Section 3.4).

3.3.3. Mobile poles

As T(x) inherits the multimodality of F(x), the local method
used in the tunneling phase could have problems at critical points
of T(x). Also, it can find points where the tunneling function
values or the iterands cannot be improved (through conditions
(23) or (24) on T(x)). Here again, to be able to move from this
point we place a pole xy,, called mobile pole. The tunneling
functions (30a) and (30b) are now modified again to finally get

F(x) — F(x*) 1
Te(x) = W 5 (37a)
TT llx — x| 1% = X[
and
1
Te(x) = (F(x) — F(x*))He(A*/||x—x:‘||)e()»m/\\x—xm||) (37)

i=1

where xp, is the position of the mobile pole and Ay, its strength.
It is necessary here again to use the ramp function given in Levy
and Montalvo [25].

Each time a mobile pole is placed the tunneling function
is modified and a descent direction is computed for this new
function. Also an initial point in a neighborhood of xp, has to be
created to continue the process. This is done as in Section 3.2
and also differs from the original implementation given in Levy
and Montalvo [25] and Barrén and Goémez [26].

When the strength of a pole either A* or Ay, is increased, it
is not necessary to re-evaluate neither the objective function nor
its gradient. The same is true if the position of the mobile pole
is changed or the mobile pole is turned off, when it is no longer
needed.
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Table 1

Pure-component parameters of the PC-SAFT equation of state used in this work®
Component M (g/mol) m o (A) elk (K)
Nitrogen 28.010 1.2053 3.3130 90.96
Carbon dioxide 44.010 2.0729 2.7852 169.21
Methane 16.043 1.0000 3.7039 150.03
Hydrogen sulphide 34.080 1.7563 3.0019 222.12
Ethane 30.070 1.6069 3.5206 191.42
Propane 44.096 2.0020 3.6184 208.11
nCs 72.146 2.6896 3.7729 231.20
nCy 100.203 3.4831 3.8049 238.40
nCio 142.285 4.6627 3.8384 243.87

2 From Gross and Sadowski [22], except parameters for HS.

3.3.4. Precision details
The stopping condition for a successful tunneling, that is
T(x{‘u) < 0, is implemented as follows:

F(xk) — F(x*) < TOLT(1 + | F(x*)]) (38)

and precision TOLT is to be selected by the user. This param-
eter is closely related to the tolerance TOLEV for considering
minima to be at the same level of the objective function value
(for details on these tolerances see Nichita and Gémez [19]).

3.4. General stopping conditions

The algorithm stops when any of the following global criteria
is satisfied:

(i) The tunneling phase is unsuccessful: the algorithm was not
able to find a point in another valley, starting the search from
the number of initial points allowed. The last minimum
found is the putative global minimum.

(i) The given maximum number of function evaluations has
been reached.

(iii) If the user has given a lower bound of the objective function
and the method has reached that value. The last minimum
found is the putative global minimum.

(iv) Ifthe user has given a lower bound of the objective function
and all the global minima at that level, required by the user,
have been found.

4. Results

Problems 1-5 in this section are benchmark problems for
phase stability testing (involving binary and ternary mixtures),
taken from Hua et al. [10], and have been also addressed pre-
viously with the tunneling method using cubic EoS [15,16,18].
Problem 6 is for a synthetic hydrocarbon mixture of Yarborough
[32]. Most of the (T,p,z) points in the numerical experiments are
chosen near phase boundaries or critical points, giving difficult
problems.

The pure component parameters (m, €, and o) used in this
work are listed in Table 1. The BIPs of short chain length alkanes
(methane and ethane) with heavier hydrocarbon components,
and CO, BIPs with normal-alkanes were previously obtained
[33] by minimizing the sum of squared relative deviations of

bubble/dew point pressure and equilibrium data (when available)
of binary mixtures. The BIPs between nitrogen and hydrocarbon
components are taken from Garcia-Sanchez et al. [34].

We use in all examples very strict tolerances. We consider
FACTR =1.d + 2 corresponding to a high accuracy, and the tol-
erance associated with the projected norm of the gradient vector
PGTOL is set at 1.d — 8. The tunneling method would even-
tually converge to the global minimum for any initial guess
in the feasible region. Here we report results using the two-
sided initialization of Michelsen [3], as implemented in [15].

The two initialization types are denoted here as L (for xEO) =

z;K;) and V (for xEO) = z;/K;). The equilibrium constants are
estimated using Wilson’s [35] relation, with pure component

critical parameters and acentric factors taken from Reid et al.
[36].

4.1. Problem I: methane—hydrogen sulphide binary mixture

The first problem (first addressed by Michelsen [3] who dis-
cussed its difficulty) is for a methane and hydrogen sulphide
binary mixture at p =40.53 bar and T=190K.

The pure component parameters (i, &, and o) for H>S and the
BIP between methane and H;S are not available in the literature.
We assume that H,S behavior can be modeled without taking
association into account; H»S has an intermediate bond energy
(Miiller and Gubbins [21], see Fig. 1).

We calculate pure component parameters by matching avail-
able experimental data (vapor pressure and saturated liquid
density) from the triple point to the critical point. The objective
function

np eXp calc 2

Pyt — PyYC(m, g, 0)

Spar(m, &, 0) = Z ( v ;/elxp )
Vi

i
2
+o1? = pfiem. £, 0’| (39)

where np is the number of experimental points, is minimized
using the simplex optimization procedure of Nelder and Mead
[37] with convergence accelerated by the Wegstein algorithm
[38].

Experimental data (Py and pr) are from Kay and Ram-
bosek [39] (20 experimental points in the temperature range
from 272.04K to 373.09 K), and Bierlien and Kay [40] (15
experimental points in the temperature range from 286.43 K
to 370.4 K). For lower pressures, we have found only vapor
pressure data in Gémez-Nieto and Papadopoulos [41] (15 exper-
imental points in the temperature range from 164.95K to
213.22 K). For these 15 temperatures, saturated liquid densities
from Daubert and Danner [42] were added to the data set; finally,
np =50. The optimum values we have obtained are m=1.7563,
£=3.0019 A, 0 =222.12 K, with standard relative deviations of
2.54% in pressure and 2.85% in density.

The BIP between methane and H; S is calculated by matching
experimental data (bubble points and equilibrium data) from
Reamer et al. [43] and Kohn and Kurata [44]
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Table 2

Adjustment of the BIP between C; and HpS

Source (method) np Temperature range (K) Pressure range (MPa) op (%) oy (%) oy (%) ki
Ref. [43] (BP) 56 277.59-344.26 1.38-13.10 4.7 1.8 - 0.0516
Ref. [43] (Flash) 56 277.59-344.26 1.38-13.10 - 1.5 1.3 0.0429
Ref. [44] (BP) 49 188.70-366.48 1.38-11.03 9.0 2.6 - 0.0648
Ref. [44] (Flash) 49 188.70-366.48 1.38-11.03 - 1.5 0.5 0.0614
Refs. [43,44] (BP) 105 188.70-366.48 1.38-13.10 8.1 24 - 0.0600
Refs. [43, 44] (Flash) 105 188.70-366.48 1.38-13.10 - 1.7 1.4 0.0475

The minimum of the following objective functions:

np PP _ peale

2
2
s =3 | (e ) #0270

i i
for the bubble-point (BP) pressure method, and

np
2 2
SFlash = Z |:(X?Xp — x?alc) + (y?xp _ qualc)

i

Table 3
Problem 1: C; (1)/HS (2) at p=40.53 bar and T=190K; k12 =0.06

for the flash calculation method is searched using the same
optimization method.
In Eq. (40), (P — PP°), (x7P — x¢41°), and (3P — y§)

1
(40a) are the residuals between the experimental and calculated val-
ues of, bubble-point pressures, liquid compositions, and vapor
compositions, respectively, for a given experimental point .
The agreement between calculated and experimental values
(40b) is evaluated through the standard relative percent deviation in

pressure, op, and standard percent deviation in mole fraction

Feed composition (z1) Stationary points of the TPD function (x)

Objective function (D)  Function evaluations ~ NT  Initialization type  State

0.9885 0.988500 0 493(19) 1 \" Stable
0.988500 0 479(16) 1 L

0.9813 0.103160 —0.000789 722(11+8+7) 2 \" Unstable
0.914333 —0.008863
0.981300 0 924(10+4+34) 2 L
0.914333 —0.008863

0.93 0.126968 0.091261 611(8+28+6) 2 \% Stable
0.930000 0
0.930000 0 593(10) 1 L

0.50 0.102702 —0.066684 753(10+9+7) 2 \% Unstable
0.913900 —0.072790
0.981253 —0.063764 737(8 +5+26) 2 L
0.913900 —0.072790

0.102 0.102000 0 757(11+8+7) 2 \% Unstable
0.913225 —0.003062
0.913225 —0.003062 764(8) 1 L

0.101 0.101000 0 1563(11) 1 \" Stable
0.912232 0.001343 1628(8 + 13 +5) 2 L
0.101000 0

Table 4

Problem 2: C; (1)/C3 (2) at p=50bar and T=277.6 K; k12 =0.0108

Feed composition (z;) Stationary points of the TPD function (x)

Objective function (D)  Function evaluations ~ NT  Initialization type  State

0.10 0.100000
0.100000

0.40 0.400000
0.865380
0.865380

0.60 0.196827
0.196827

0.90 0.900000
0.900000

0 685(10) 1 v Stable

0 676(11) 1 L

0 839(10+13+10) 2 \% Unstable
—0.149707
—0.149707 809(9) 1 L
—0.231321 1586(8) 1 \% Unstable
—0.231321 1573(9) 1 L

0 984(8) 1 \Y% Stable

0 979(10) 1 L
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Table 5
Problem 2: C; (1)/C3 (2) at p=98bar and T=277.6K; k12 =0.0108
Feed composition (z1) Stationary points of the TPD function (x) Objective function (D) Function evaluations NT Initialization type State
0.40 0.400000 0 1070(10) 1 Vv Stable
0.400000 0 1067(7) 1 L
0.68 0.669781 —5.656E—7 826(17+84 +5) 2 \Y% Unstable
0.738787 —7.435E-5
0.669781 —5.656E—7 824(15+84+5) 2 L
0.738787 —7.435E—-5
0.73 0.654521 —3.908E—5 1160(15) 1 \'% Unstable
0.654521 —3.908E—5 1162(13) 1 L
0.90 0.900000 0 108012) 1 \' Stable
0.900000 0 1077(9) 1 L
for the liquid, oy, and vapor, oy, phases of methane. 0
-0.01 A
1 np pP _ peale 172
op=100|— 4 (41a) e -0.021
np Z PP S
i i B -0.03 -
5
L 11/2 g -0.04
2
or =100 —) (7P — ycale 41b & 005
. - 2,-:( PP — xgile) (41b) T
- - -0.06
e o0 ] N 1/2 -0.07
_ L exp _ cale
oy = 100 an(yl ¥l (41c) o8 i . ‘ .
L i i 0 0.2 0.4 0.6 0.8 1
where op, 0, and oy were obtained by using the optimal values Methane mole fraction
of binary interaction parameters. Fig. 3. TPD function for the C1/HaS (equimolar) at p =40.53 bar and T'= 190 K.

Calculations are summarized in Table 2: number of exper-

imental points, temperature and pressure ranges, standard
deviations and BIPs, for data from [43,44], and for the whole
data set. Examination of the results listed in Table 2 reveals
that (i) standard percent deviations o p are systematically larger
than oy and oy, (ii) the BIPs calculated with the BP method
are larger than those calculated with the flash method, (iii) in
terms of temperature dependence, the trend suggested by our
calculations is that the BIP decreases as temperature increases,
and (iv) oy, from the BP method are (obviously) larger than those
from the flash method, but they still indicated a very good agree-

ment. We suggest the use of BIP values obtained from the BP
method.

Results of phase stability testing of C; (1)/HpS (2) at
p=40.53bar and T=190K for several feeds are presented in
Table 3. Calculations are performed with k12 =0.06. For each
feed there are given: the stationary points found by tunnel-
ing, the value of the objective function, the number of function
evaluations (in parenthesis detailed are given for each minimiza-
tion/tunnelization cycle; FE for the last tunneling phase is given
by the difference to total FE), the number of tunneling phases,

Table 6
Problem 3: C; (1)/N, (2) at p=76bar and T=270K; ki =0.04134
Feed composition (z;) Stationary points of the TPD function (x) Objective function (D) Function evaluations NT Initialization type State
0.90 0.900000 0 879(12) 1 v Stable
0.900000 0 881(14) 1 L
0.82 0.519224 —0.001150 1293(8) 1 \% Unstable
0.519224 —0.001150 1293(10) 1 L
0.70 0.501155 —0.015762 826(8) 1 \'% Unstable
0.501155 —0.015762 828(10) 1 L
0.56 0.560000 0 1121(9+26+4) 2 A\ Unstable
0.836911 —0.015989
0.560000 0 113927 +26 +4) 2 L
0.836911 —0.015989
0.40 0.400000 0 855(7) 1 v Stable
0.400000 0 858(10) 1 L
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and the initialization type (L or V). The last column indicates
the state of the mixture at given (7,p,z) conditions (stable, i.e.
single phase if D is zero at its global minimum, or unstable,
i.e. the mixture splits into two or more equilibrium phases if
the global minimum of D is negative). Fig. 3 plots the TPD
function vs. methane mole fraction for the equimolar mixture,
showing a local minimum (at x; =0.9813) near the global mini-
mum (located at x; =0.9139). For one initialization the method
finds first the local minimum, and then the global minimum is
found by a second minimization, while for the other initialization
the global minimum is found by the first minimization. Note that
the last two feeds in Table 3 are different from those in [10,15];
there were chosen in the vicinity of the phase boundary, which
is crossed at about z; =0.101 for the PC-SAFT EoS.

4.2. Problem 2: methane—propane binary mixture

This is a binary mixture of methane (1) and propane (2)
at T=277.6 K. The BIP is k;2 =0.0108, taken from [33]. The
results are reported in Table 4 for p=50bar and in Table 5
for p=98 bar. Feeds 2 and 3 for p =98 bar are close to critical
conditions. The TPD function is plot vs. methane mole frac-
tion in Fig. 4a for feed 2 (with 0.68 Cp). A detail is given in
Fig. 4b, illustrating the particularities that make this feed diffi-
cult: the value of the objective function at the global minimum
is very small (D = —7.44E — 5), and a local minimum (with
D = —5.66E — 7) is located in its vicinity. For both initializa-
tions, tunneling finds first the local minimum, then it escapes
from its valley in the first tunnelization stage (note the rela-
tively high number of FE in this stage as compared with the
other examples), and finds the global minimum in a second
minimization.

4.3. Problem 3: ethane—nitrogen binary mixture
This is a binary mixture of ethane (1) and nitrogen (2)

at p=76bar and T=270K, with kj»=0.04134 (the BIP is
taken from Garcia-Sanchez et al. [34]). Results for five feeds

Table 7
Problem 4: C; (1)/CO; (2) at p=60.8 bar and T=220K; k12 =0.06

0.6
(@)
0.5 -
0.4 -
0.3 1

0.2

01 /

0 0.2 0.4 0.6 0.8 1
Methane mole fraction

TPD function

0.00001
!

0 To—e—e
-0.00001
-0.00002
-0.00003
-0.00004
-0.00005
-0.00006
-0.00007

-0.00008 T T T T T
0.66 0.68 0.7 072 074 0.76 0.78

Methane mole fraction

TPD function

Fig. 4. (a) TPD function for the C;/C3 (0.68/0.32) at p=98 bar and T=277.6 K.
(b) TPD function for the C;/C3 (0.68/0.32) at p =98 bar and T=277.6 K. Detail.

(with feeds 2 and 3 at near saturation conditions) are given in
Table 6.

4.4. Problem 4: methane—carbon dioxide binary mixture

This is a binary mixture of methane (1) and carbon dioxide
(2) at p=60.8bar and T=220K. The BIP is k12 =0.06 [33].
The results of stability testing for five feeds are presented in
Table 7.

Feed composition (z;) Stationary points of the TPD function (x)

Objective function (D)

Function evaluations ~ NT  Initialization type = State

0.90 0.900000 0
0.900000 0

0.80 0.509871
0.509871

0.70 0.569416
0.807787
0.569416
0.807787

0.57 0.570000 0
0.807848
0.570000 0
0.807848

0.40 0.400000 0
0.400000 0

—0.002928
—0.002928

—0.001904
—0.007517
—0.001904
—0.007517

—0.005677

—0.005677

836(13) 1 \Y% Stable
833(10) 1 L
1415(8) 1 \% Unstable
1416(8) 1 L
7548+ 17+4) 2 \% Unstable
7559+ 17+4) 2 L
756(8+17+5) 2 \"% Unstable
7579+ 17+5) 2 L
1145(10) 1 \Y% Stable

1133(8) 1 L
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Table 8

Problem 5: C; (1)/C; (2)/N; (3) at p=T6bar and T=270K; k12 =—0.006, k13 =0.0307, k23 =0.0418

Feed composition (z1,z2) Stationary points of the TPD function®

Objective function (D)

Function evaluations ~ NT  Initialization type  State

(0.10, (0.070855, 0.787534) —0.013459 3839(12) 1 \ Unstable
0.60) (0.103344, 0.570830) —6.329E-5 4186(20+ 165+ 10) 2 L

(0.070855, 0.787534) —0.013459
(0.30, (0.305823, 0.537154) —3.697E—6 460421 +141+15) 2 \ Unstable
0.55) (0.255426, 0.640274) —7.866E—4

(0.305823, 0.537154) —3.697E—6 4601(18+141+15) 2 L

(0.255426, 0.640274) —7.866E—4
(0.38, (0.38, 0.54) 0 4403(17) 1 \% Stable
0.54) (0.38, 0.54) 0 4401(15)) 1 L
(0.05, (0.05, 0.90) 0 4991(14) 1 v Stable
0.90) (0.05, 0.90) 0 4980(20) 1 L

 (x1x2).

Table 9 literature as Y8 mixture. This is a model gas condensate con-
Composition and BIPs for the Y8 mixture taining normal-alkanes (feed composition is given in Table 9).
Component Mole fraction kyj ko Methane and ethane BIPs from [33] (ki; and ky;, respectively)
c 0.8097 ~ are listed in Table 8; all other BIPs are set to zero. The dewpoint
c, 0.0566 —0.006 _ at T=366.5K calculated in a predictive mode with the PC-
Cs 0.0306 0.011 0.0015 SAFT EoS is 219.27 bar (the experimental value is 216.36 bar
nCs 0.0457 0.020 0.005 [32]). The results of stability testing for four pressures on the
nCy 0.0330 0.023 0.008 T=366.5 K isotherm are given in Table 10.
nCio 0.0244 0.0271 0.010

4.5. Problems 5: methane—ethane—nitrogen ternary mixture

This is a ternary mixture of methane (1), ethane (2) and nitro-
gen (3) at p=T6bar and T=270K. The BIPs are k1, =—0.006
[33], k13 =0.0307 [34], and k23 =0.0418 [34]. Calculations are
performed for four feeds; the results are presented in Table 8.
Note that the first feed (unstable) is near dewpoint conditions,
while feeds 2 (unstable) and 3 (stable) are at near-critical con-
ditions.

4.6. Problems 6: the Y8 six-component synthetic mixture

Finally, we test phase stability for a six-component syn-
thetic mixture studied by Yarborough [32], referred in the

For problems 1-5, the number of FE required to find the
global minimum and to ascertain globality is comparable with
the number of FE reported in [ 15] for TUNPEQ with the PR EoS
or SRK EoS. For the last example (with the problem dimension-
ality n=>5), just thousands of FE are required for the selected
conditions. We should mention that the tunneling method is
designed to search for the global minimum of the objective
function, and not for all its stationary points; however, finding
all stationary points with tunneling is possible [19] by using a
modified objective function for the stability problem (Stateva
and Tsvetkov [45]) with multiple global minima at the same
level.

Global optimization methods are very costly as compared to
local methods. It was established in several publications that tun-
neling is at least on order of magnitude faster than other global
optimization methods for reliably solving various phase equi-
librium problems with cubic EoS. The same trend is expected

Table 10
Problem 6: Y8 mixture
(T, K/P, bar) Objective function (D) Function evaluations NT Initialization type State
366.5/200 —0.019679 3686(15) 1 A% Unstable
0 327117+ 11+ 14) 2 L
—0.019679
366.5/219.25 —0.749308E—5 2828(16) 1 A% Unstable
0 3096(14 +22+8) L
—0.749308E—5 2
366.5/219.3 0.238929E—4 3618(16+79+7) 2 A% Stable
0
0 4069(14) 1 L
366.5/230 0 2775(30) 1 \% Stable
0 3631(14) 1 L
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for more complex thermodynamic models. Moreover, the use
of efficient optimization tools is more stringent if highly com-
plex thermodynamic models are used, since the cost of a single
function evaluation is significantly higher.

5. Conclusions

The gradient-based tunneling global optimization method
was successfully used for finding the global minimum of the
TPD function, using the PC-SAFT EoS (without association)
for mixtures containing hydrocarbon components and hydrogen
sulphide, carbon dioxide and nitrogen. The tunneling method
proved to be reliable and efficient by several difficult numerical
experiments. The three H,S parameters required by the PC-
SAFT equation, as well as the BIP between H,S and methane
were calculated by matching available experimental data.
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